Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements

نویسندگان

  • Emeline Dubois
  • Nathalie Mathy
  • Vinciane Régnier
  • Julien Bischerour
  • Céline Baudry
  • Raphaëlle Trouslard
  • Mireille Bétermier
چکیده

During sexual processes, the ciliate Paramecium eliminates 25-30% of germline DNA from its somatic genome. DNA elimination includes excision of ∼45 000 short, single-copy internal eliminated sequences (IESs) and depends upon PiggyMac (Pgm), a domesticated piggyBac transposase that is essential for DNA cleavage at IES ends. Pgm carries a core transposase region with a putative catalytic domain containing three conserved aspartic acids, and a downstream cysteine-rich (CR) domain. A C-terminal extension of unknown function is predicted to adopt a coiled-coil (CC) structure. To address the role of the three domains, we designed an in vivo complementation assay by expressing wild-type or mutant Pgm-GFP fusions in cells depleted for their endogenous Pgm. The DDD triad and the CR domain are essential for Pgm activity and mutations in either domain have a dominant-negative effect in wild-type cells. A mutant lacking the CC domain is partially active in the presence of limiting Pgm amounts, but inactive when Pgm is completely absent, suggesting that presence of the mutant protein increases the overall number of active complexes. We conclude that IES excision involves multiple Pgm subunits, of which at least a fraction must contain the CC domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway

Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposab...

متن کامل

Ku-Mediated Coupling of DNA Cleavage and Repair during Programmed Genome Rearrangements in the Ciliate Paramecium tetraurelia

During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitt...

متن کامل

The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences

Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Para...

متن کامل

Subtraction by addition: domesticated transposases in programmed DNA elimination.

The ciliate Paramecium tetraurelia must eliminate approximately 60,000 short sequences from its genome to generate uninterrupted coding sequences in its somatic macronucleus. In this issue of Genes & Development, Baudry and colleagues (pp. 2478-2483) identify the protein that excises these noncoding sequences: a domesticated piggyBac transposase that has been adapted to remove what are likely t...

متن کامل

The taming of the shrew

Transposons are mobile genetic elements that can be harmful for the host when mobilized. However, they are also genomic reservoirs for novel genes that can be evolutionarily beneficial. There are many examples of domesticated transposases, which play important roles in the hosts. In most cases domesticated transposases have lost their endonuclease activities and the hosts utilize their DNA-bind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017